Management of Proteomics Data:

2D Gel Electrophoresis and Other Methods

Philip Andrews

National Resource for Proteomics & Pathway Mapping

Michigan Proteome Consortium University of Michigan

Outline of Presentation

- Introduction and Point of View.
- Role of Standards in Proteomics
- Management, Annotation, Distribution of Proteomics Data.
- Role of Open Source in Proteomics

Challenges in Proteomics.

- The gaps between Basic Research, Technical Development, and Commercialization narrow dramatically in rapidly-evolving fields.
- Commitment to a single technology may be fatal in a rapidly evolving field.
- Computational and IT infrastructure is critical and limiting for Proteomics.

Proteome Informatics and the Rate of Progress in Proteomics

Availability of appropriate software.

Effective information management.

Lack of basic standards.

Challenges in Proteome Informatics

- Proteome technologies evolve rapidly.
 - Software always lags behind hardware.
 - Software always lags behind applications.

Current database structures are inadequate – missing data, data quality, complex interactions, changing interactions, new data types, pedigree, etc.

Challenges in Proteome Informatics II

- Ability to extract knowledge from large, complex biological datasets is still evolving.
- Mechanisms for annotation of genome databases need to be improved.
- Planning large-scale experiments must be automated.

Data Challenges in Proteomics

- High-throughput technologies generate large amounts of data.
- Data are heterogeneous.
- Data relationships are complex.
- There are minimal standards.

Data Complexity: Proteome Mapping Data

- 2D Gel Images
- MS spectra
- MS/MS spectra
- LC MS
- 2D LC/ MS/MS
- Tune files
- Sample data
- Data analysis parameters

Proteomics Is Both Research and Production.

- Standards are more easily applied to production.
- Standards should conform to technology, not the other way around.

Why Do We Need Proteome File Standards?

- Standardize reporting.
- Data pipelines require batch export of files.

 Allow more facile development of open source software for proteomics.

Data longevity.

XML Files for Proteomics

- Pros
 - Structured
 - Easily readable
 - Translatable into other formats
 - Amenable to open source development
- Cons
 - Inefficient
 - Complexity can be problem

Development of Proteomics XML Standards

- ISB (www.isb.org)
 - mzXML
- EBI/HUPO (<u>www.hupo.org</u>, <u>www.pedro.org</u>)
 - Pedro
 - mzDATA, MIAPE
- www.gaml.org

XML Summary

- A near-term solution.
- Useful for data exchange.
- Multiple formats will be necessary.
- Formats will change.
- Mechanism for timely updates will be necessary.
- We will support all major XML formats.

But Other Formats Could BeBetter

- Computationally, restructuring files to better fit your data structure can lead to increases in efficiency.
 - It is important that the file format be publicly available.
 - Parsers and translators should also be available.
 - Batch conversions should be supported.
- The standard should be openess in data formats.

Information Management in Proteomics

- Low level data management (e.g., LIMS).
- Curation tools (goal is to automate).
- Higher level information management (e.g., metadata).
- Aggregation and Integration systems.

General Goals:

- Integrated, simple, <u>flexible</u> system to acquire, manage, and mine Proteomics data (code generation).
- Useable by distributed groups.
- Support all data types and standards.
- Secure.

Specific Design Goals:

- Open architecture development.
- Multi-tier with HTML user interface.
- Distributed system.
- Scaleable system.
- Compatible with other databases.
- Flexibly accommodate data types.
- Low maintenance.
- Easily extensible.
- Developed using open standards.

System Components

- Laboratory data management system,
- Data viewers (2D Gel images, chromatograms, and mass spectra),
- Automated data collection from instruments,
- Automated protein database search engines (Mascot, Prot. Prospector, X!Tandem),
- Data discovery toolkits.

Prime Architecture

Work Flow Levels

- Lab Level (Samples)
- Data Level (Processing)
- Administrative Level (Paper)

Lab Level Work Flow

Image Analysis Top Segment

Robotics Top Segment

PRIME Table Structure Segment

PRIME Summary Stats

- 220 tables.
- ~2,200 Java source files
- $\sim 10^6$ lines of code.

prime.proteome.med.umich.edu

Uses of PRIME

- Documentation and management.
- Curation.
- Collaboration tool.
- Provide data access for reviewers.
- Host public access to data.

Distribution of Proteomics Data: The Cathedral vs the Bazaar Revisited.

- Centralized system.
 - Must deal with many of the same issues as standards development.
 - May be better suited for metadata.
- Distributed system.
 - Distributes costs of maintenance.
 - Puts 'ownership' in hands of interested parties.

What Are Issues for Distributed Systems?

- Ownership of data.
- Persistence.
- Maintenance of context.
- Quality Control.
- Security.
- Cost (long-term maintenance).

Challenges in Proteome Informatics

- Proteome technologies evolve rapidly.
 - Software always lags behind hardware.
 - Software always lags behind applications.
- Instrument development is negatively impacted by software development (cost and time).

The (partial) Solution: Open Source Efforts in Proteomics

- Progress in Proteomics will be faster if a robust open source community is developed.
- Open source efforts allow the community to respond to new technologies rapidly.
- Open source allows each individual in the community to respond to their own needs.
- Cost of development is shared.
- Open Source is compatible with commercial proprietary software.

Open Source Websites

- www.proteomecommons.org
- www.thegpm.org
- http://www.systemsbiology.org/
- www.jasondunsmore.org/projects
- www.bioexchange.com/tools/
- http://bioinformatics.icmb.utexas.edu/OPD/
- http://www.peptideatlas.org/

www.proteomecommons.org

- Versioning system for organization and archives.
- Full source code and documentation downloadable.
- Spectra used for development and testing downloadable.
- Digital signatures used for security.
- Allows mirroring and bittorrent so users may host their own projects.
- Supports metainformation attached to projects.
- Code-in-progress accessible.

Spectrum Viewer Module in PRIME

Open Source Spectrum Viewer

- Uses WebStart
- Displays peak lists or spectra.
- Allows usual data manipulations.
- Generates peak lists.
- Allows spectrum annotation.
- Exports publishable-quality images.

Selected Datasets Distributed on Proteome Commons

- Development datasets
- 'Gold Standard' datasets
 - ~50 eukaryotic proteins
 - 400 human proteins
- Hosting/mirroring other datasets

Acknowledgements

Proteomics

- Mary Hurley (MPC)
- Eric Olsen (NRPP)
- Gary Rymar (NRPP)
- John Strahler (NRPP, MPC)
- Donna Veine (NRPP)
- Angela Walker (NRPP, MPC)
- Xuequn Xhu (NRPP)

NRPP

- Russ Finley (WSU)
- Brett Phinney (MSU)
- Trey Ideker (UCSD)
- Curt Wilkerson (MSU)

Acknowledgements

Proteome Informatics

- Thomas Blackwell (UM)
- Jayson Falkner (UM)
- Russ Finley (WSU)
- Catherine Grasso(UM)
- Trey Ideker (UCSD)
- George Michailidis (UM)
- Panagiotis Papoulias
- David States (UM)
- Peter Ulintz (UM)
- Curt Wilkerson (MSU)

Software Development

- David Lentz
- Narayani Anand
- Hsueling Chang
- Panagiotis Papoulias

Websites

- www.proteomecommons.org
- www.proteomeconsortium.org
- www.proteome.med.umich.edu
- www.proteomecenter.med.umich.edu